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A Parallel Neuromorphic Text Recognition
System and Its Implementation on a
Heterogeneous High-Performance

Computing Cluster
Qinru Qiu, Qing Wu, Morgan Bishop, Robinson E. Pino, Member, IEEE, and

Richard W. Linderman, Fellow, IEEE

Abstract—Given the recent progress in the evolution of high-performance computing (HPC) technologies, the research in

computational intelligence has entered a new era. In this paper, we present an HPC-based context-aware intelligent text recognition

system (ITRS) that serves as the physical layer of machine reading. A parallel computing architecture is adopted that incorporates the

HPC technologies with advances in neuromorphic computing models. The algorithm learns from what has been read and, based on the

obtained knowledge, it forms anticipations of the word and sentence level context. The information processing flow of the ITRS imitates

the function of the neocortex system. It incorporates large number of simple pattern detection modules with advanced information

association layer to achieve perception and recognition. Such architecture provides robust performance to images with large noise.

The implemented ITRS software is able to process about 16 to 20 scanned pages per second on the 500 trillion floating point

operations per second (TFLOPS) Air Force Research Laboratory (AFRL)/Information Directorate (RI) Condor HPC after performance

optimization.

Index Terms—Heterogeneous (hybrid) systems, distributed architecture, natural language interfaces, machine learning
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1 INTRODUCTION

WITH the rapid development in high-performance
computing (HPC) technologies, the research in

machine intelligence has entered a new era. How to harness
the huge amount of computing power and memory storage
provided by the modern HPC clusters and convert it to
useful computations that assist or even replace the human
cognition process? Will the performance of current neuro-
morphic computing models scale as the hardware resource
increases? What is the bottleneck of current HPC architec-
tures when applied to cognitive computing and how can
this be addressed by future computing tools? The research
work at Syracuse University and the Air Force Research
Laboratory (AFRL) Information Directorate (RI) makes a
preliminary effort in answering these questions.

Research discoveries in human psychology suggest that
human information processing is a multilevel process [1]
that mostly relies on pattern matching and sensory
association rather than calculation and logic inference.
Information is first processed by the sensory cortex where
the complex data is reduced to abstract representations. The

abstract representation is compared to stored patterns in
massively parallel neural networks in the basal ganglia and
neocortex to generate a quick reaction. If more sophisticated
processing such as reasoning is needed then relatively
slower sequential processes will occur in the prefrontal
cortex. To cope with this information processing procedure,
the neocortex of human brain consists of the primary
sensory area, the association area and the higher order
association area [2]. The primary sensory cortex detects the
basic dimensions of the external stimuli to the five sensory
systems. The sensory cortex is further divided into cortical
columns which could detect a specific input pattern (such
as contour, color, or pitch, etc.) in a specific area. Each
sensory system has its own association area that combines
information from the primary sensory cortex to produce
perception (i.e., cognition). The higher order sensory system
carries out complex mental processes by combining
information from several sensory association areas. Sensory
association is the most important step in perception. The
association area is by far the most developed part of the
cerebral cortex.

The above analysis partly reveals the answers to the
first question that we previously raised. In order to harness
the modern computer to imitate the human cognition
process, we believe that the following architecture should
be considered:

1. Both the hardware and software should follow the
hierarchy of the neocortex, with the lower level
dedicated for pattern detection of the raw external
input and the upper level dedicated for information
association-based perception.
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2. The same input should be processed by multiple
functional modules corresponding to different pri-
mary sensory cortical columns for the detection of
different patterns. In this way the complexity of each
function module is reduced. Furthermore, all of the
function modules are independent of each other and
can be implemented in parallel.

3. Fast information association is more important than
accurate detection. With the help of information
association, relatively simple pattern matching algo-
rithms can be used to achieve accurate perception.

Many algorithms have been proposed for pattern
detection and information association. Clearly, different
algorithms favor different hardware configurations. In
general, pattern matching algorithms such as neural net-
works and support vector machines (SVMs) are dominated
by matrix and vector operations while information associa-
tion models such as Bayesian networks and probabilistic
graph models require large storage space to capture
complex relations. If we try to replicate the human
information processing flow, it naturally requires machines
with massively parallel processing capability and high
computation speed at the bottom layer for pattern detection
and machines with large memory space and high memory
access speed at the upper layer.

Such hierarchical architecture can be found in the 1,800-
node 500 trillion floating point operations per second
(TFLOPS) Condor HPC cluster that was built at AFRL/RI
in 2010. The Condor HPC consists of 78 subclusters and
each subcluster is composed of dual Intel Xeon six-core
processors as the head node, 22 Sony PlayStation3 (PS3)
computers based on the IBM cell broadband engine (Cell-
BE) processor [12], and 2 NVIDIA general purpose graphic
processing unit (GPGPU) cards. Each Cell-BE processor has
one PowerPC processor and six synergistic processing
elements (SPEs). Each SPE is a self-contained vector
processor that peaks at eight floating point operations per
clock cycle at 3.2 GHz. With six of these SPEs, a cell
processor provides 153 GFLOPS (billion floating point
operations per second) peak performance. The vector
processing capability of the SPE makes it suitable for matrix
and vector operations used in pattern matching algorithms
such as neural networks and SVMs. Overall, the 1,716 Cell-
BE processors deliver 262 TFLOPs computing power and
form the first layer hardware of a neuromorphic computing
system. The second layer is naturally the head nodes, each
of which has 12 cores and 24 GB memory. The memory
access speed is up to 2 GB/s per core.

We believe that such brain inspired signal processing
flow could generally be applied to many cognitive applica-
tions, from image processing, to intruder detection, etc. To
investigate the software and hardware requirements of this
new information processing approach, a proof-of-concept
prototype of context-aware intelligent text recognition [13],
[14], [15] software (ITRS) is developed on the Condor HPC.
Its architecture incorporates the Condor HPC technologies
with advances in neuromorphic computing models. The
lower layer of the ITRS performs pattern matching of the
input image using a simple nonlinear autoassociative
neural network model called Brain-State-in-a-Box (BSB)

[6]. It matches the input image with the stored alphabet.
Each BSB model is analogous to a cortical column in the
primary sensory area that performs the preliminary
detection. Sometimes, multiple matching patterns may be
found for one input character image. The upper layer of the
ITRS performs information association using the cogent
confabulation model [11]. It enhances those BSB outputs
that have strong correlations in the context of word and
sentence and suppresses those BSB outputs that are weakly
related. In this way, it selects those characters that form
meaningful words and sentences. Each confabulation
model is analogous to a cortical column in the sensory
association area that associates the primary detections to
form high-level cognition. Compared to existing Optical
Character Recognition (OCR) systems such as OCRopus [3],
[4], [5], Tesseract [15], [16], and Microsoft OneNote, the
proposed ITRS system has the following distinctions.

1. It has a much simpler bottom layer for image
processing and pattern matching. The BSB model
is a simple and weak associative memory compared
to some more powerful networks using complex
learning rules [6]. However, we propose a novel
racing mechanism that enables the BSB to generate
fuzzy pattern matching results which retain rich
information that could be processed by the upper
association layer. By contrast, most of the existing
text recognition systems heavily rely on image
processing and pattern matching, which require
complex algorithms and intensive computation.
They provide deterministic results and cannot
accept feedback from information association layer.

2. The text recognition of ITRS is mainly achieved by a
powerful information association layer. The more
than 6 GB knowledgebase of the information
association layer contains information extracted
from English literature. It is trained by “reading”
more than 70 classical texts. Our hash-based techni-
que enables us to update and query the knowledge-
base efficiently [17]. Although many of the existing
text recognition systems also have integrated dic-
tionary and language models, compared to the one
used in the ITRS, they are not as closely integrated.

3. The powerful information association technology
and extensive knowledge of English language
enables the ITRS to perform text recognition using
information beyond the input image. The experi-
mental results show that the ITRS system is
capable of recognizing more than 85 percent of
words correctly when each word has 30 percent
characters occluded. Using the OCR function of the
Microsoft OneNote, less than 5 percent of words
can be read accurately.

4. The ITRS is intrinsically parallel and its software
structure fits nicely to the architecture of Condor
HPC. To recognize a sentence requires up to 10,400
BSB models, 20 confabulation models at the word
level and one confabulation model at the sentence
level. With medium optimization effort in double
buffering and latency hiding, these models can be
operated in parallel. The Cell-BE in the cluster is
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efficient at processing the BSB models due to its
vector processing capability. The headnode in the
cluster is the natural candidate for the processing of
the confabulation model, due to its large storage
space and fast memory access speed. Compared to
the ITRS, existing text recognition systems do not
have good scalability to distributed and parallel
computing hardware. Because they do not have an
intrinsic parallel structure, they usually focus on the
parallelization of a specific pattern matching [18] or
image processing [19] algorithm, which requires
high design effort.

To implement the ITRS system on the Condor cluster is
not trivial. The major challenge is how to balance the
workload and hide the communication latency for better

performance. This paper will introduce the software and
hardware architecture of the ITRS system as well as some
implementation details. Its accuracy and performance will
be discussed based on the experiment data. The impact of

the available hardware resources on the system throughput
will also be analyzed.

The remainder of the paper is organized as follows: a
brief introduction of related works in text recognition is

provided in Section 2. In Section 3, we introduce the basics
of the two neuromorphic models used for the ITRS
software. Section 4 describes the overall system model
and the algorithms in different layers. Section 5 gives the

details of implementation on the Condor HPC. The
experimental results and discussions are presented in
Section 6. Section 7 summarizes the work.

2 RELATED WORKS

Research in text recognition has a long history [20]. It

consists of three major thrusts, optical character recognition,
pre-OCR image processing and post OCR words correction.

Before 2000, the research efforts focus on general OCR
technology. Most of the works divides an OCR engine into
five stages: scanning, segmentation, feature extraction, and

character classification [22]. Some typically used feature
extraction techniques for OCR include, template matching
[23], zoning [24], moments extraction [25], [26], contour
information, etc. A detailed survey of feature extraction

techniques for OCR is provided in [21].
Based on the classification techniques, the OCR can be

divided into statistical identification [28], syntactic classifi-
cation [28] and neural network-based classification [22],
[29], [30], [31]. In [29], Cao et al. recognize handwritten
numbers based on the features extracted from the direc-
tional code histogram and gray scale transformation. A two
stage neural network is developed to classify these features.
The first layer consists of a 256 input single layer neural
network that classifies the gray scale feature. The second
layer consists of 45 64-input and 3-output neural networks
that classify the directional features. Budiwati et al. [31]
utilize a back propagation neural network to recognize the
Japanese characters. The authors divide character image
into small regions and extract blob information of these
regions. These features are classified by a four-layer neural
network that has 2,386 neurons and 185,580 connections.

In recent years, the research focus of text recognition
shifts to preprocessing and postprocessing techniques. The
former enhances the image quality for better OCR accuracy
[32], [33], [34], while the later relies on dictionaries of
language information to correct OCR errors [35], [37], [36],
[38]. For example, both references [35] and [37] try to correct
OCR error based on topic information. Their goal is to
obtain a maximum likelihood estimate of the actual word t
given the OCR output w by maximizing the posteriori
pðtjwÞ ¼ pðwjtÞpðtÞ=pðwÞ. The word probability p(t) is
profiled for different topics, pðwÞ (i.e., the probability of
OCR output w) is assumed to be a uniform distribution. The
error model pðwjtÞ is assumed to be known by characteriz-
ing the OCR tools. This model assumes a constant pðwjtÞ
during the entire OCR process, which could be inaccurate,
because the signal noise ratio will change during OCR as
the image quality changes. Donoser et al. [37] propose to
verify the OCR output by sending a query to search engine
such as Google for each recognized word, a correlation is
built based on the number of results returned. This
verification method requires no training and it is able to
recognize popular made-up words. However, it does not
consider any context information beyond word level.
Harding et al. [38] use the n-gram model to capture
character correlations at word level. A database is then
developed for queries that search for the closest match.
Again, this work only considers information at the word
level. None of the above mentioned work addresses the
performance of OCR.

Our review shows that existing OCR technique usually
requires complicated feature extraction and computation
intensive pattern classification. They have a separate post-
OCR correction stage which usually only relies on word
level information. Our proposed ITRS overcomes these
limitations by combining OCR and post-OCR correction,
and utilizes context information at the sentence level.

3 BACKGROUND

The neuromorphic model adopted by the ITRS software is
mainly built based on the Brain-State-in-a-Box attractor
model [10] and the Cogent Confabulation model [11]. The
BSB models provide the preprocessing of the image of each
character seeking a matching pattern. The cogent confabu-
lation algorithms combine information from the BSB model
to form more complex objects such as words or sentences.
During this procedure, it suppresses the inputs that does
not have strong association with others and enhances the
remaining inputs. In other words, the confabulation model
eliminates those BSB results that do not form meaningful
words and sentences.

3.1 Brain-State-in-a-Box Model

The BSB model is a simple, autoassociative, nonlinear,
energy-minimizing neural network [7], [8], [9], [10]. A
common application of the BSB model is to recognize a
pattern from a given noisy version. It can also be used as
a pattern recognizer that employs a smooth nearness
measure and generates smooth decision boundaries.

There are two main operations in a BSB model, Training
and Recall. In this work, we focus on the BSB recall operation.
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The mathematical model of a BSB recall operation can be
represented in the following form:

xðtþ 1Þ ¼ Sð��A�xðtÞ þ ��xðtÞ þ ��xð0ÞÞ; ð1Þ

where

. x is an N dimensional real vector.

. A is an N-by-N connection matrix.

. A�xðtÞ is a matrix-vector multiplication operation.

. � is a scalar constant feedback factor.

. � is an inhibition decay constant.

. � is a nonzero constant if there is a need to maintain
the input stimulation.

. S() is the “squash” function defined as follows:

SðyÞ ¼
1; if y � 1;
y; if �1 < y < 1;
�1; if y � �1:

8<
: ð2Þ

Note that in the proposed algorithm, we choose � to be
0.1, � to be 1.0 and � to be 0.0. But they can be easily
changed to other values during the implementation. Given
an input pattern x(0), the recall process executes (1)
iteratively to reach convergence. A recall converges when
all entries of xðtþ 1Þ are either “1.0” or “-1.0.” In our
implementation, it usually takes more than 10 iterations for
recall to converge.

The BSB model is selected in the ITRS for two reasons.
First, it is simple to operate compared to other complex
neural network models [6]. Although it has lower accuracy,
this can be compensated later in the information association
stage. Second, its convergence roughly indicates the
similarity between the input and the stored pattern. It is
pointed out by Anderson [6] that the average convergence
time of the BSB model increases as the input goes further
away from the attractor. This property enables the racing
model in character recognition, which will be introduced in
Section 3.2.

3.2 Cogent Confabulation

Cogent confabulation is a connection-based cognitive
computing model. It captures correlations between objects
(or features) at the symbolic level and stores this informa-
tion as a knowledge base. Given an observation, familiar
information with high relevancy will be recalled from the
knowledge base. Based on the theory, the cognitive
information process consists of two steps: learning and
recall. During learning, the knowledge links are established
and strengthened as symbols are coactivated. During recall,
a neuron receives excitations from other activated neurons.
A “winner-takes-all” strategy takes place within each
lexicon. Only the neurons (in a lexicon) that represent the
winning symbol will be activated and these neurons will
activate other neurons through knowledge links. At the
same time, those neurons that did not win in this procedure
will be suppressed.

Fig. 1 shows an example of lexicons, symbols, and
knowledge links. The three columns in Fig. 1 represent
three lexicons for the concept of shape, object, and color
with each box representing a neuron. Different combina-
tions of neurons represent different symbols. For example,

as shown in Fig. 1, the pink neurons in lexicon I represent
the cylinder shape, the orange and yellow neurons in
lexicon II represent a fire extinguisher and a cup, while the
red neurons in lexicon III represent the red color. When a
cylinder shaped object is perceived, the neurons that
represent the concepts “fire extinguisher” and “cup” will
be excited. However, if a cylinder shape and a red color are
both perceived, the neurons associated with “fire extin-
guisher” receive more excitation and become activated
while the neurons associated with the concept “cup” will be
suppressed. At the same time, the neurons associated with
“fire extinguisher” will further excite the neurons asso-
ciated with its corresponding shape and color and even-
tually make those symbols stand out from other symbols in
lexicons I and III.

A computational model for cogent confabulation has
been proposed by Hecht-Nielsen [11]. Based on this model,
a lexicon is a collection of symbols. A knowledge link (KL)
from lexicon I to II is a matrix with the row representing a
source symbol in lexicon I and the column representing a
target symbol in lexicon II. The (i,j)th entry of the matrix
represents the strength of the synapse between the source
symbol si and the target symbol tj. It is quantified as the
conditional probability P ðsijtjÞ. The collection of all knowl-
edge links is called a knowledge base (KB). The knowledge
bases are obtained during the learning procedure. During
recall, the excitation level of all symbols in each lexicon is
evaluated. Let l denote a lexicon, Fl denote the set of
lexicons that have knowledge links going into lexicon l, and
Sl denote the set of symbols that belong to lexicon l. The
excitation level of a symbol t in lexicon l can be calculated as:

I tð Þ ¼
X
k2Fl

(X
s2Sk

I sð Þ
�
ln

P sjtð Þ
p0

� ��
þB

)
; t 2 Sl: ð3Þ

The function I(s) is the excitation level of the source
symbol s. Due to the “winner-takes-all” policy, the value of
I(s) is either “1” or “0.” The parameter p0 is the smallest
meaningful value of P ðsijtjÞ. The parameter B is a positive
global constant called the band gap. The purpose of
introducing B in the function is to ensure that a symbol
receiving N active knowledge links will always have a
higher excitation level than a symbol receiving (N-1) active
knowledge links, regardless of the strength of the knowl-
edge links. For example, both symbols t1 and t2 belong to
lexicon I. And both of them are activated by two symbols
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from other lexicons. However, t1 is activated by two symbols
that belong to the same lexicon, while t2 is activated by two
symbols that belong to different lexicons. We consider t2 to
be more highly activated than t1 and the band gap B is
introduced to increase the excitation level of t2.

Compared to other information association models, such
as the Bayesian network, the confabulation model is much
simpler in training and recall due to its unique excitation
mechanism and the adoption of posterior probability. For
more information, please refer to [11].

4 ARCHITECTURE AND ALGORITHMS

4.1 System Architecture

The ITRS is divided into three layers as shown in Fig. 2. The
input of the system is a text image. The first layer is
character recognition software based on BSB models. It tries
to recall the input image with stored images of the English
alphabet. If there is noise in the image, multiple matching
patterns may be found. The ambiguity can be removed by
considering the word level and sentence level context,
which is achieved by the information association in the
second and third layer where word and sentence is formed
using cogent confabulation models. Image processing front-
end software is designed to read in the scanned images of
text and separate them into blocks of smaller images of

single characters. The ITRS system is evaluated using
images of scanned text with missing information, i.e., texts
with hard-to-recognize or missing characters. Its accuracy
will be reported in Section 6.

In this work, we designed a new “racing” algorithm for
BSB recalls. The algorithm is based on the observations that
the convergence speed of the BSB recall process indicates
the distance between the input and remembered patterns.
For a given character image, we consider all patterns that
converge within a certain number of iterations as potential
candidates that may match the input image. Candidate BSB
outputs will be activated and used to trigger the corre-
sponding symbols in the confabulation model for informa-
tion association. By using the racing algorithm, if there is
noise in the image or the image is partially damaged,
multiple matching patterns will be triggered for the same
input character image. For example, a horizontal scratch
will make the letter “T” look like the letter “F.” In this case,
we have ambiguity in character recognition. The pattern
that cannot form meaningful words and sentences will be
eliminated in the later stages.

Fig. 3 shows an example of using the ITRS to read texts
that have been occluded. The BSB algorithm recognizes text
images with its best effort. The word level confabulation
provides all possible words that associate with the
recognized characters while the sentence level confabula-
tion finds the combination among those words that gives
the most meaningful sentence.

4.2 The “Racing” Mechanism for BSB Recalls

In this section, we first describe the “racing” mechanism
that we use to implement the multianswer character
recognition process.

Without loss of generality, assume that the set of
characters we want to recognize from images consists of
52 characters, which are the upper and lower case
characters of the English alphabet.

S ¼ f0a0; 0b0; . . . ; 0z0; 0A0; 0B0; . . . ; 0Z0g:

QIU ET AL.: A PARALLEL NEUROMORPHIC TEXT RECOGNITION SYSTEM AND ITS IMPLEMENTATION ON A HETEROGENEOUS HIGH-... 5
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We also assume that for each character in S, there are M
typical variations in terms of different fonts, styles and
sizes. For example, the set of images of character 0a0 with
different variations can be represented as:

Sa ¼ fa1; a2; . . . ; aMg:

In terms of pattern recognition, there are a total of 52�M
patterns to remember during training and to recognize
during recall. If we follow the traditional application
approaches of the BSB models, the solution is to train one
BSB model to remember all the 52�M patterns. During
recall, given an input image, this model will eventually
converge to one of the remembered patterns (attractors) that
represent the recognition result. The shortcomings of this
approach is that, first it requires a BSB model with large
dimensionality (N the dimension of vector X in (1)) to
remember all the patterns. This increases the complexity
(/ N2) of the computation and also reduces the scalability
when implemented on parallel computing architectures.
Second, this approach only provides one answer to the
input image. The BSB recall process does not return the
second or third closest attractor for the image. For
recognizing damaged texts, providing only one answer is
not adequate for the low-level pattern recognition model to
work with high-level language models.

Therefore, in our implementation, the primary goal is to
design a process that provides multiple candidates for an
input image. The secondary goal is to have reasonably sized
BSB models to have good scalability and keep computation
complexity under control.

The solution we designed is to use one BSB model for
each character in S. Therefore, there will be a set of 52 256D
BSB models, that is:

SBSB ¼ fBSBa;BSBb; . . . ; BSBz;BSBA;BSBB; . . . ; BSBZg:

Each BSB model is trained for all variations of a
character. For example, BSBa is trained to remember all
the variable patterns in Sa, BSBb will remember patterns in
Sb, and so forth. If we define the procedure “Recall(A, B)”
as the recall process using model A with input image B,
returning the number of iterations it takes to converge, the
recall and candidate selection process can be described in
Fig. 4.

In this algorithm, fK;Th 1;Th 2g are adjustable para-
meters based on overall reliability and robustness needs.

Generally speaking, in our multianswer implementation,
we utilize the BSB model’s convergence speed to represent
the “closeness” of an input image to the remembered
characters (with variations). Then we pick up to K “closest”

candidates (that satisfy conditions 3a and 3b) to work with
high-level language models to determine the final output.
On the AFRL/RI Condor HPC with 1,716 IBM Cell-BE
processors, our implementation was able to execute the
recall operations in parallel. Because each BSB model is
small enough to fit on a single Cell-BE processor, the overall
performance scales linearly with the number of Cell-BE
processors used. With the 1,716 Cell-BE processors, the
program can recognize over 250,000 characters per second.

4.3 Word and Sentence Confabulations

The inputs of word confabulation are characters with
ambiguities referred to as candidates. For each input image,
one or multiple character level candidates will be generated
by the BSB model. In this work, we assume that each word
has less than 20 characters. Any word that is longer than
this will be truncated. Currently, if a word has less than
20 characters, it will be padded with white spaces. In the
future, the length of the word will be considered as an input
to the confabulation model to avoid this type of padding
and to speed up the process.

The word level confabulation model consists of three
levels of lexicon units (LUs). There are 20 LUs in the first
level and the ith LU in the first level represents the
ith character in the word. There are 19 LUs in the second
level and the ith LU in the second level represents a pair of
adjacent characters at location i and iþ 1. Finally, there are
18 LUs in the third level and the ith LU in the third level
represents a pair of characters located at i and iþ 2.

A knowledge link (KL) from lexicon I to II is an M �N
matrix, where M and N are the cardinalities of symbol sets
SI and SII . The (i,j)th entry of the knowledge link gives the
conditional probability P ðijjÞ where i 2 SI and j 2 SII .
Symbols i and j are referred to as the source symbol and
target symbol respectively. Between any two LUs, there is a
knowledge link (KL). If we represent the lexicons as vertices
and represent the knowledge link from lexicon I to lexicon
II as a directed edge from vertex I to vertex II, then we will
obtain a complete graph.

Confabulation-based word level and sentence level
prediction heavily relies on the quality of the knowledge
base (KB). The training of the KB is the procedure to
construct the probability matrix between source symbols
and target symbols. The training program first scans
through the training corpus and counts the number of co-
occurrences of symbols in different lexicons. Then for each
symbol pair it calculates their posterior probability.

The word level recall algorithm finds all words from
possible combinations of input character candidates. For
example, if the input candidates of a three-letter word are:
(w t s r p o k e c a) for the first letter, (h) for the second letter,
and (y t s r o m i h e a) for the third letter, then the word
level confabulation program will find 24 words, including
“why,” “who,” “wha,” “thy,” “thi,” “the,” “tha,” “shy,”
“sho,” “she,” “rho,” “phr,” “ohs,” “oho,” “ohm,” “kho,”
“eht,” “cha,” “aht,” “ahs,” “ahr,” “ahm,” “ahh,” and “aha.”
Although some of them are not dictionary words, they
appear at least once in the training corpus, which consists of
more than 70 fiction books. Some of these nondictionary
words are names for special places or objects and some of
them are used to represent specific sounds. A few of them
are typos or errors in the training file.
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For each input candidate in each lexicon, the recall
algorithm sets the corresponding symbols to be active. A
lexicon that has multiple symbols activated is referred to as
an ambiguious lexicon and the goal of the word level
confabulation is to eliminate such character level ambiguity
as much as possible or to transform it into word level
ambiguity which can be further eliminated by sentence
level confabulation.

For each lexicon that has multiple symbols activated, we
calculate the excitation level of each activated symbol. The
excitation level of a symbol i in lexicon B is defined as:

ELB i½ � ¼
X
A6¼B

X
j2factive symbols in Ag

klAB j½ � i½ �;

where klAB½j�½i� is the knowledge value from symbol j in
lexicon A to symbol i in lexicon B. The N highest excited
symbols in this lexicon are kept active. These symbols will
further excite the symbols in other ambiguous lexicons. This
procedure will continue until the activated symbols in all
lexicons do not change anymore. If convergence cannot be
reached after a given number of iterations, then we will
force the procedure to stop.

For each word in a test sentence, the word level
confabulation model generates one or multiple word
candidates. They will be the input to the sentence level
confabulation model.

The sentence level confabulation model is very similar to
its word level counterpart except that there are only two
levels of LUs. The first level LUs represent single words
while the second level LUs represent adjacent word pairs.
The training and recall functions of sentence level con-
fabulation have the same principle as these functions at
word level. It is important to point out that, each first level
lexicon for word confabulation contains at most 26 symbols
representing 26 letters in the alphabet and each second and
third level lexicon for word confabulation contains at most
26� 26 ¼ 676 symbols; however, the maximum size of the
symbols of each sentence level lexicon equals the total
number of English words and word pairs. Without any
compression, the sentence level knowledge base will be
extremely large. For example, the English version of the
book “Round the Moon” has about 47� 103 words. Our
analysis shows that it has 23� 103 distinguished symbols
(i.e., words and word pairs). As we mentioned earlier, each
knowledge link is a M �N matrix, where M and N are the
symbol size of the source and target lexicons. Without any
compression, the trained knowledge base will have 2:3�
109 entries which are equivalent to be 9.2 GBytes.
Fortunately, the knowledge links are sparse matrices. Only
less than 0.1 percent of the matrix has nonzero values.
Therefore, an option to reduce the memory cost is to store
the knowledge using the list of list (LIL) format, which has
been widely used for sparse matrix storage. However, this
leads to the second problem. As the size of the training
corpus grows, the number of symbols of each lexicon can
easily go up to hundreds of thousands. Even with the best
search algorithm, the time to locate the entry in the
compressed matrix grows logarithmically and soon the
algorithm will become prohibitively slow. In this work, two-
level hash functions are used to speed up the training and

recall of the sentence level confabulation model. It provides
10 to 15X speed ups to locate a knowledge entry in a 6 GB
compressed knowledge base. More details of sentence level
confabulation can be found in our recent work [17].

We need to point out that many state-of-the-art optical
character recognition systems also have integrated lan-
guage models [3], [16]. The most widely used existing
language model is the n-gram model which captures the
posterior probability pðwijw) of the next n words wi,
1 � i � n, given the observation of the current word w.
The confabulation-based language model differs from the
n-gram model in several ways. First, the confabulation
model selects the ambiguous word in a way such that the
likelihood of the observation of the rest of the sentence is
maximized. In contrast, the n-gram model maximizes the
likelihood of the selected words given the observation of
the rest of the sentence. Although there is no definite
advantage of one approach over another, they sometimes
give different results.

Second, the n-gram model can only be applied in a
sequential way. It analyzes the sentence and predicts words
in a sequential order from left to right, while our knowledge
base provides the relations between all words or word pairs
in the sentence. This enables the software to confabulate
ambiguous words at the beginning of the sentence based on
the information provided later.

Finally, the recall function of the confabulation model
mimics the information processing in the human neurolo-
gical system, where neurons are exciting and being excited
at the same time. Therefore, when ambiguity exists in
multiple words, the selections of these entries evolve
simultaneously. These differences indicate that the con-
fabulation model is a better fit for information association
than the n-gram model.

5 IMPLEMENTATION ON AFRL/RI CONDOR HPC

5.1 Overall Software Architecture

The overview of the implementation of the ITRS software
is shown in Fig. 5. It explores the parallelism in hardware
and software to achieve high throughput for the system.
We partition the entire workload into pages. All subclus-
ters run simultaneously and independently to process
different pages. In this way the cluster level parallelism is
achieved. There is a performance monitor that periodically
checks the utilization of the processor cores in the cluster
for performance characterization. Because each subcluster
loads pages on-demand, at cluster level, our system
behaves asynchronously.

Upon receiving the page image, the head node first slices
the image into small blocks, each of which contains one
character. The blocks are dispatched to the PS3s, which run
the BSB recalls for character recognition. The results are sent
back to the head node for word level and sentence level
confabulation. With a double buffering technique, the
confabulation and BSB processes can be parallelized.
Furthermore, all 132 SPEs in 22 PS3s are running simulta-
neously to process different characters. In this way, we
achieve maximum processor level parallelism. At this level,
the system is loosely synchronous because each SPE
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receives the same number of image blocks and they perform
the same amount of computation. Because of the limited
buffer space, a periodic synchronization between the BSB
and the confabulation is necessary. All interprocessor
communication is implemented via the Message Passing
Interface (MPI).

Based on the results from the BSB recalls, the host will
fork multiple threads; each thread is a word level con-
fabulation procedure. After all word candidates in a
sentence have been found, a sentence confabulation process
is executed. The word level and sentence level confabula-
tion threads are dispatched to different cores on the Intel
Xeon processor, and in this way we achieve core level
parallelism. The key reason that we choose thread level
parallelism instead of process level parallelism is because it
allows shared memory so that we do not have to duplicate
the word-level knowledge base, which is more than 200 MB
in size. In order to avoid frequent context switching, which

usually happens when the number of threads is greater
than the number of cores, we adopt a token passing
mechanism to control the number of threads. The program
maintains a token pool. The number of tokens in the pool is
less than or equal to the number of cores in the system. A
token will be removed from pool when a thread is created
and be returned when the thread ends. Because the threads
are created on demand and complete dynamically, at this
level, all cores work asynchronously.

5.2 Subcluster Level Task Interactions

As we mentioned before, at the subcluster level, the system
is loosely synchronous. At the beginning of each iteration,
the head node processes the scanned page and sends 96
character images to each PS3. Without waiting for the PS3
to send back the BSB results, the head node continues to
work on the BSB results received in the previous iteration.
During the same time, all PS3s perform similar computa-
tions and they will complete the recalls at approximately
the same time. The candidates for matching patterns are
returned to the head node and stored in the MPI buffer. The
head node will not process the MPI message until it has
finished processing the previously returned results.

At the subcluster level, two techniques are used to
increase the throughput of the system. First, we pipeline the
BSB model and confabulation model on PS3s and the head
node. Therefore the throughput of the system is determined
by the maximum delay of BSB and confabulation instead of
the total delay of these two. Second, by using MPI for
interprocessor communication, we implicitly use a double
buffering technique to hide the communication latency.

Fig. 6 shows the subcluster task scheduling. When the
confabulation delay is much greater than the BSB delay, the
communication latency for the send and receive procedure
as well as the computation latency of the BSB recalls are
hidden. The initiation interval of the system is determined
by the delay of image processing and confabulation, i.e.,
T ¼ Timg þ Tconfab. When the confabulation delay is smaller
than the BSB delay, the computation latency of the
confabulation model is hidden, the system initiation
interval is determined by the delay of image processing,
the communication delay of sending, and receiving MPI
messages and the delay of the BSB recalls, i.e.,
T ¼ Timg þ Tsend þ Tbsb þ Trcv. It is important to point out
that Tbsb is a constant. For each input image, the same
number of BSB recalls is performed. Each BSB recall is run
for the fixed number of iterations in order to check their
convergence speed. The quality of the input image does not
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Fig. 5. Overview of the software architecture.

Fig. 6. Subcluster level task scheduling.
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affect the BSB computation time. However, a lower image
quality means that more candidates will be found by
the character recognition process. Therefore, it increases the
workload and execution time for the word and sentence
confabulation processes.

5.3 Multithreading Confabulation

To fully utilize the multicore architecture of the head node,
layers 2 and 3 of the ITRS are implemented using multi-
threading techniques. Fig. 7 shows the task and data
dependence graph of the ITRS software. A word confabula-
tion process will not be triggered until all the characters in
that word have been processed by the BSB processes.
Similarly, a sentence confabulation process cannot start
until all the words in that sentence have been confabulated.
Obviously the word confabulation process is triggered more
frequently than the sentence confabulation process. Further-
more, each word confabulation takes a longer time than a
sentence confabulation process. This is because we need to
find all valid words from the combinations of the character
candidates while only one most meaningful sentence from
the combination of the word candidates.

In order to maximize the throughput, it is necessary to
parallelize the word confabulation processes. Fig. 8 shows
how the ITRS tasks are mapped to a subcluster with 22 Cell-
BE processors and one N-core head node. At anytime, on
the N-core head node we can run one thread of sentence
confabulation and N � 1 threads of word confabulation.
Each word confabulation thread processes one word. The
sentence confabulation thread is the main thread which is
always active. Besides sentence confabulation, it also
performs other tasks such as character separation and
communicates with the BSB processes. The word confabu-
lation threads are dynamically created when all characters
belonging to a word have been processed by the BSB
processes. After the word confabulation completes, the
thread will be deleted.

We keep the number of threads to be exactly equal to the
number of cores in the head node, in order to avoid
excessive context switches. This is achieved by using a
token passing mechanism. A token is used to represent the
status of a core. It can be in three states: ready state, running
state, and completion state. A token pool is maintained in
the main thread. The number of tokens in the pool equals to
the number of cores in the system. All tokens in the pool are

in the ready state. When all characters of a word are
received and if there is a token in the pool, a new word
confabulation thread is created and a token is removed
from the pool. The state of that token is changed to
“running.” When the word confabulation completes, the
thread is deleted and the token state is changed to
“completion.” Only after the results of the word confabula-
tion are collected by the main thread, will the state of the
corresponding token be changed to “ready” and the token
will return to the pool. The token passing mechanism
guarantees that at any time the number of active threads is
no more than the number of processor cores.

The multithreading architecture leads to an interesting
synchronization problem. As shown in Fig. 9, two circular
buffers are maintained in the main thread. The first buffer is
referred as the “input buffer.” It stores the outputs from the
BSB processes that will be used as the inputs by the word
confabulation thread. The input buffer is written in a
sequential order. It is read by the word confabulation also in
a sequential order. The results from word confabulation
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will be written into an “output buffer.” The item in the

ith location of the input buffer will be written into the

ith location of the output buffer. There are up to N � 1

threads of word confabulation working simultaneously on

N � 1 different words. Their processing speeds are differ-

ent. Whenever a thread completes processing a word, it

writes the result to the corresponding location in the output

buffer and fetches another word from the input buffer. As a

result, the output buffer will be written out-of-order. The

output buffer will be read by the sentence confabulation

process again in sequential order. A read pointer is used to

indicate the starting word of the next sentence. When the

next M entries from the read pointer have been filled (M is

the number of the words in the next sentence), the sentence

confabulation process will be started and those entries will

be removed from the output buffer.
In general, a new thread of word confabulation will start

as long as the input buffer is not empty and a token is

available. However, due to the variable confabulation speed

of different words, it is possible that one of the threads is

still working on a word belonging to the sentence that is to

be read out next, while other threads have already filled up

the rest of the buffer. Because the output buffer must be

read out in sequential order, no sentence can be read from

the buffer before the current sentence is read. In this

scenario, the output buffer is “full” and a stall happens. No

new word will be fetched from the input buffer until the

next sentence is removed from the output buffer. More

strictly speaking, the stall happens when the following

three conditions are true:

. The read pointer of the output buffer is at the
ith location,

. There is one word confabulation thread working on
the jth location, j� i < M, where M is the number
of words in the next sentence,

. The current read pointer of the input buffer is at
location j� 1.

The stall is used to synchronize the speed of different

word confabulation processes; therefore, we refer to the

delay that is introduced by the stall as synchronization

delay. The synchronization delay increases when the

variation of the word confabulation time gets larger.

6 EXPERIMENTAL RESULTS

The ITRS software is implemented on the AFRL/RI Condor
HPC and evaluated for accuracy and performance.

6.1 Recognition Accuracy

In the first experiment, we test the software using text
images with low level noise. Our test case is extracted from
the book “Great Expectations” by Charles Dickens. The text
consists of 96,767 letters or 23,912 words. The text has not
been read during the training process. In order to explicitly
control the noise in the input, we use generated bit maps of
text images instead of scanned text images. Horizontal
scratches are added to the images of letters selected
randomly. The amount of noise in the input is controlled
by two parameters: 1) the thickness of horizontal scratches
varies from one pixel wide to three pixels wide. Fig. 10
shows examples of the three different types of horizontal
scratches. Note that the scratches are located in the center of
the text image, where most of the information to distinguish
amongst various characters is found. Also note that each
text image is 15x15 pixels, and a 1- 3 pixel scratch across the
image is equivalent to 7-20 percent missing information.
2) The probability that a character is scratched varies from
0.2, 0.4 to 0.6.

The outputs of ITRS are compared against the original
text. A sentence (or a word) is considered inaccurately
recognized if there is one word (or one letter) mismatch
from the original text. Table 1 gives the accuracy of word
and sentence confabulation. They are calculated as the
number of sentences (words) that have been correctly
“read” divided by the number of sentence (word) con-
fabulations that have been invoked. The same table also
gives the percentage of correct words. It is calculated as the
total number of correct words (including both confabulated
and none-confabulated) divided by the total number of
words in the text. As we can see, the rate of accurate word
confabulation and the overall percentage of correct words
are very close to each other. This is because the majority of
words have at least one scratch. Therefore, they all need to
go through the word confabulation process.

Fig. 11 shows the rate of correct sentences and correct
words found by the ITRS when a well-trained sentence level
knowledge base (i.e., “long KB”) is used and a poorly trained
sentence level knowledge base (i.e., “short KB”) is used. The
size of the high-quality knowledge base (“long KB”) is more
than 6 GB, while the size of the low quality knowledge base
(“short KB”) is only 2.7 MB. The data series of “% improve”
gives the percentage improvement of the results obtained
using “long KB” over the results obtained using “short KB.”
These charts indicate that better knowledge at the sentence
level improves the sentence accuracy up to 80 percent and
word accuracy up to 8 percent.
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In the second experiment, we test the ITRS system using

text images with completely occluded characters. The two

test files are extractions from the book “Great Expectations”

by Charles Dickens and the book “Lost World” by Arthur

Conan Doyle. Neither of these books has been read during

the training. We increase the percentage of occluded letters

from 10 to 30 percent. Table 2 gives the sentence level and

word level accuracy for different input files. As we can see,

even with 30 percent of the characters missing, the ITRS can

recognize more than 85 percent words correctly.
The following two examples show the input text (with

occluded letters) and the recognized text from ITRS:
Input: bu new the s unds by this t me and co ld

is ociate th m from the object o rs it.
Recognized sentence: but I knew the sounds by this time

and could dissociate them from the object of pursuit.
Input: gra ious o dne s r c o s me what one wit

th pi .
Recognized sentence: gracious goodness gracious me

whats gone with the pig.

Correct sentence: gracious goodness gracious me whats
gone with the pie.

Compared to existing text recognition systems, the
uniqueness of the proposed ITRS is its ability to achieve high
accuracy from poor image detection and pattern matching
results. For example, given a text image with about 20 percent
characters occluded, the OCR function in Microsoft OneNote
system outputs less than 20 percent correct words, which is
much lower than the results from the ITRS.

6.2 System Performance

Fig. 12 shows the evolution of the ITRS software architec-
ture over time. We started with a base line implementation
as shown in Fig. 12a, in which all the software components
are connected sequentially except for the BSB engines that
are running on 22 PS3s in parallel. Our first step is to
improve the confabulation speed by multithreading, as
shown in Fig. 12b.
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To evaluate the performance of the ITRS software, we
carried out experiments on three different input test cases. In
the first input file 20 percent of character images are
scratched by 1-pixel-wide horizontal bars. Compared to
the other two test cases, it has the highest image quality. The
second input file has 40 percent of character images
scratched by 2-pixel-wide horizontal bars. Compared to test
cases one and three, it has the medium image quality. The
last input file has 60 percent of character images scratched by
3-pixel-wide horizontal bars. It is the lowest quality input
file. The number of word confabulation threads is varied
from one to seven and denoted as t. The total runtime (in
seconds) is broken down into BSB time, word confabulation
time, sentence confabulation time and synchronization time.
The concept of synchronization delay is introduced in
Section 5.3. The sizes of the input/output buffers in the
double buffering system are set to be 100 sentences.

Fig. 13 shows the runtime information for the three test
cases when the number of word confabulation threads
increases from one to seven. It also reports the performance
improvements of the multithreading implementations
compared to the baseline implementation.

Several observations can be made from the results.

1. No matter how the image quality changes, the BSB
time remains constant.

2. When the quality of the input text image deteriorates,
the word/sentence confabulation time increases.
This is because we rely on the confabulation to
resolve the ambiguities in the input.

3. When the quality of the input text image deterio-
rates, the synchronization delay gets longer. This is
because the variations in the word confabulation
speed increases as the level of ambiguity rises, and
the in-order/out-of-order circular buffer will be
blocked more frequently.

With the multithreading technique, we can improve the

runtime by up to 70 percent.
The results in Fig. 13 show that with low-quality input, the

synchronization delay becomes the bottleneck that

prevents us achieving linear speedups by using multi-

threading techniques. One way to relieve this bottleneck is

to increase the capacity of the double buffering system. We

increase the buffer size from 100 sentences to 200 and 300

sentences and run the experiment again on the low quality

input file. Fig. 14 gives the runtime information for the

systems with three different buffer configurations. The last

data series (i.e., “buffer imprv”) gives the performance

improvement due to the increased buffer size. The results

show that with seven word confabulation threads, increasing

the buffer size from 100 to 200 and 300, we reduce the

runtime by 20 and 30 percent.
We further improve the ITRS software architecture by

parallelizing the BSB and confabulation processes, as shown

in Fig. 12c. Fig. 15 shows the performance of the improved

system on high quality, medium quality and low-quality

inputs. The buffer capacity is set to 300 sentences. The data

series labeled “improvement” gives the performance im-

provement of the system over the baseline implementation,

while the data series labeled “improv2” gives the percen-

tage speed improvement by comparing the parallel ITRS

with multithreading ITRS. The number of word confabula-

tion threads and the buffer size of these two systems are

kept the same. The results show that parallelizing the BSB

and confabulation is most effective for the medium quality

test cases, because the BSB time and confabulation time are

approximately equal for this type of test cases and

executing them simultaneously can reduce the total runtime

by 50 percent.
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Fig. 14. Increase of buffer size reduces the synchronization delay.
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7 CONCLUSION

We have presented an HPC-based context-aware Intelligent
Text Recognition System that serves as the physical layer of
machine reading. A parallel computing architecture is
adopted that incorporates the HPC technologies with
advances in neuromorphic computing models. The algo-
rithm learns from what has been read and, based on the
obtained knowledge, it forms anticipations at the word and
sentence level. The knowledge helps to suppress the noise in
during pattern detection. The implemented ITRS software is
able to process about 16 to 20 scanned pages per second on
the 500 TFLOPS AFRL/RI Condor HPC cluster with
reasonable effort put toward performance optimization.
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